Corning® Varioptic® C-S-25H0-038 Auto Focus Lens Module

Overview
The Corning® Varioptic® C-S-25H0-038 auto focus lens module integrates a fixed lens module with a Corning® Varioptic® A-25H0 variable focus lens in an M12x0.5 receptacle (S-mount). The C-S-25H0-038 has an FPC cable and can be connected to a standard 1 mm pitch FPC connector. It can be easily integrated with a standard M12 sensor board. The C-S-module is compatible with imaging sensor formats up to 1/3”.

For more information on this module, please refer to the C-S-25H0-038 Technical Datasheet (TEDS).

Ordering Information
- **Corning® Varioptic® C-S-25H0-038-03 auto focus lens module**: 4-pin, 1 mm pitch, bent flex cable (FPC-A-3) without IR-cut filter
- **Corning® Varioptic® C-S-25H0-038-03I auto focus lens module**: 4-pin, 1 mm pitch, bent flex cable (FPC-A-3) with IR-cut filter
- **Corning® Varioptic® C-S-25H0-038-06 auto focus lens module**: 4-pin, 1 mm pitch, bent flex cable (FPC-A-6) without IR-cut filter
- **Corning® Varioptic® C-S-25H0-038-06I auto focus lens module**: 4-pin, 1 mm pitch, bent flex cable (FPC-A-6) with IR-cut filter
- **Corning® Varioptic® C-S-25H0-038-07 auto focus lens module**: 4-pin, 1 mm pitch, straight flex cable (FPC-A-7) without IR-cut filter
- **Corning® Varioptic® C-S-25H0-038-07I auto focus lens module**: 4-pin, 1 mm pitch, straight flex cable (FPC-A-7) with IR-cut filter

Performance Summary
- Effective focal length: 3.85 mm
- F number: 2.2
- Image circle diameter: 6.1 mm
- Focus range: -7 cm to infinity

Example of Applications
- Videoconferencing
- Medical imaging
- Industrial endoscopes

Contents
- Opto-Electrical Performance
- Electrical Specifications
- Absolute Maximum Ratings
- Mechanical Dimensions
- Module Setting Recommendations
Opto-Electrical Performance

Performances described below are for 25°C and for the lens setting described in the ‘Module Setting Recommendations’ section of this document.

<table>
<thead>
<tr>
<th>Optical Performances at V_∞</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage for infinite focus</td>
<td>V_∞</td>
<td>39.5</td>
<td></td>
<td></td>
<td>V</td>
<td>(1)</td>
</tr>
<tr>
<td>Focal length at V_∞</td>
<td>EFL</td>
<td>3.85</td>
<td></td>
<td></td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>Image circle diameter</td>
<td></td>
<td>6.1</td>
<td></td>
<td></td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>Corner Chief Ray Angle</td>
<td>CRA</td>
<td>32.4</td>
<td></td>
<td></td>
<td>°</td>
<td></td>
</tr>
<tr>
<td>Mechanical back focal length at V_∞, without IR-cut filter</td>
<td></td>
<td>0.98</td>
<td></td>
<td></td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>Mechanical back focal length at V_∞, with IR-cut filter</td>
<td></td>
<td>0.84</td>
<td></td>
<td></td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>F-number</td>
<td>F#</td>
<td>2.2</td>
<td></td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Diagonal Field of view</td>
<td>DFOV</td>
<td>76.8</td>
<td></td>
<td></td>
<td>°</td>
<td>(2)</td>
</tr>
<tr>
<td>IR filter cut-off wavelength</td>
<td>λ_c</td>
<td>650</td>
<td></td>
<td></td>
<td></td>
<td>(5)</td>
</tr>
</tbody>
</table>

Focus control performances

<table>
<thead>
<tr>
<th>Focus distance</th>
<th>x</th>
<th>7</th>
<th>∞</th>
<th>cm</th>
<th>(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage for x= 7 cm</td>
<td>V_{7cm}</td>
<td>54</td>
<td>60</td>
<td>V</td>
<td>(3); (4)</td>
</tr>
<tr>
<td>Slope</td>
<td>S</td>
<td>0.85</td>
<td></td>
<td>m^{-1}/V</td>
<td>(1)</td>
</tr>
</tbody>
</table>

Notes:

(1) For more information on the behavior of the A-25H0 lens with voltage, please refer to the A-25H TEDS.
(2) For a sensor size of 6.1 mm diagonal (1/3”).
(3) For shorter focusing distances, see “Module Setting Recommendations”.
(4) Refer to figure 5 on page 5
(5) For 50% transmission. Typical performance of IR cut filter is given below:

![Graph showing optical performance](image-url)
Electrical Specifications

Electrical Connection

The following FPC connectors are compatible with the FPC tip:

- SFW4S-2STE9LF from Amphenol FCI
- 04FMN-BTK-A (LF)(SN) from JST

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacitance</td>
<td>pF</td>
<td>C</td>
<td></td>
<td>100</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Q Factor</td>
<td>-</td>
<td>Q</td>
<td></td>
<td>26</td>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Current consumption</td>
<td>µA</td>
<td>I_max</td>
<td></td>
<td></td>
<td>200</td>
<td>(2)</td>
</tr>
</tbody>
</table>

Notes:

(1) Measured at a frequency of 1 kHz and a voltage of 1 V and 20 V.
(2) Adjustable lens current only – does not include the driver.

Driver

Several drivers have been qualified for use with Corning Varioptic variable focus lenses (See A-25H Data Sheet). The customer should choose the driver depending on its application. It is important to check the resolution of the driver compared to the depth of field of the system. See driver datasheets for more details.

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Temperature</td>
<td>T</td>
<td>-30</td>
<td>..</td>
<td>85</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>T_stg</td>
<td>-40</td>
<td>..</td>
<td>85</td>
<td>°C</td>
<td>(1)</td>
</tr>
<tr>
<td>AC Input RMS Voltage</td>
<td>V_max</td>
<td></td>
<td></td>
<td>60</td>
<td>V</td>
<td>(1)</td>
</tr>
<tr>
<td>Input Voltage Frequency</td>
<td>f</td>
<td></td>
<td>5</td>
<td></td>
<td>kHz</td>
<td>(1)</td>
</tr>
</tbody>
</table>

Notes:

(1) For more information on A-25H0 electrical driving, please refer to the A-25H TEDS.
Mechanical Dimensions

Module

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centering diameter</td>
<td>mm</td>
<td>D1</td>
<td>10.95</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height</td>
<td>mm</td>
<td>T1</td>
<td>9.2</td>
<td>9.4</td>
<td>9.6</td>
<td></td>
</tr>
<tr>
<td>Centering height</td>
<td>mm</td>
<td>T2</td>
<td>1.1</td>
<td>1.2</td>
<td>1.3</td>
<td></td>
</tr>
</tbody>
</table>

FPC Details:

Figure 1: FPC-A-3 (ordering "-03")

Figure 2: FPC-A-7 (ordering "-07")
Module Orientation

Figure 3: FPC-A-6 (ordering "-06")

Figure 4: Module 3D view (here illustrated with FPC-A-3 (-03))

Figure 5: Definition of x and MBFL
Module Setting Recommendations

Use caution when configuring the initial lens module settings. Although the user has complete control over module configuration settings, only a limited number of configurations will provide optimum image quality.

Setting Procedure without Voltage:

Here is a simple procedure to set the C-S-25H0-038 module for a 7 cm to ∞ usage:

1. Set a scene at a distance of at least 5 m from the camera.
2. Insert and slightly screw the C-S-module on the M12 camera lens holder (C-S-module unpowered).
3. The image should be out of focus.
4. Screw the C-S-module clockwise until the center of the image becomes sharp.
5. From this position, screw the C-S-module clockwise an additional 1/2 turn with accuracy of \pm 1/8 turn: the image becomes out of focus again.
6. Fix the C-S-module in this position.
7. Power the C-S-module: the infinite focus will be obtained for V_∞ and the focus at a closer position will be obtained by applying a higher voltage, up to V_{max}.

To use the C-S-25H0-038 module for a maximum focus of distance x_0, modify the above steps:

1. Set a scene at a distance of x_0 from the camera.
2. Power the C-S-module: the focus at x_0 will be obtained for V_∞ and the focus at a closer position will be obtained by applying a higher voltage, up to V_{max}.

With this setting, the minimum object distance is reduced from 7 cm to:

$$\frac{1}{14 + \frac{1}{x_0}}$$

in meters, with x_0 in meters.

Setting Procedure with Voltage:

1. Connect the C-S-module to the driver and adjust the voltage control to 39.5 V$_{\text{rms}}$
2. Turn on the camera, and point the camera in the direction of a scene that is at least 5 m from the module, or at a distance of x_0 if using at the maximum focus distance x_0.
3. Screw the C-S-module clockwise until the image becomes sharp.
4. Optional: Block the C-S-module in that position.

Corning reserves the right to change its product specifications at any time without notice. Please ensure you have the latest applicable specification before purchasing a Corning product. It is customer responsibility to determine the suitability of Corning’s product to its own application. Corning does not provide any warranty of merchantability or fitness for a particular purpose. Product specifications are available upon request at varioptic@corning.com.