Corning® Varioptic® A-39N Variable Focus Lens

Overview
The Corning® Varioptic® A-39N0 variable focus lens is based on Corning’s breakthrough adjustable lens technology, allowing variable focus with absolutely no moving parts. It has been designed primarily for imaging applications needing a large clear aperture: long focal objectives, large sensors, C-Mount objective lenses. It features 20 diopters dynamic range, guaranteeing 5 cm focus ability. The A-39N0 is perfectly suited for industrial vision, medical imaging cameras, optical equipment, and biometric devices. For more information on this lens, please refer to the A-39N Technical Data Sheet (TEDS).

Ordering Information
- Corning® Varioptic® A-39N0 variable focus lens: has anti-reflective (AR) coatings optimized in the visible range.
- Corning® Varioptic® A-39N1 variable focus lens: has AR coatings optimized in near infrared range.
- Corning® Varioptic® A-39N9 variable focus lens: has no AR coating.
- Corning® Varioptic® A-39NX-P04 variable focus lens: Packaged A-39NX – Bent flex cable (X=0,1,9).
- Corning® Varioptic® A-39NX-P08 variable focus lens: Packaged A-39NX – Long straight flex cable (X=0,1,9).
- Corning® Varioptic® A-39N0-PW065 variable focus lens: Packaged A-39N0 with 65 mm wire length.
- Corning® Varioptic® A-39N0-PW0XX variable focus lens: Packaged A-39N0 with customized wire length.

Performance Summary
- 20 diopters dynamic range
- Low wave front error, 50 nm typical
- Functions quietly
- Low power consumption

Example of Applications
- Machine vision
- Industrial cameras
- Medical images
- Lasers

Contents
Opto-Electrical Performance ... 2
Electrical Specifications ... 3
Temperature Range .. 3
Transmission Performance .. 3
Mechanical Dimensions .. 5
Integration .. 8
Opto-Electrical Performance
@25°C, @635 nm unless otherwise stated.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Symbol</th>
<th>Typ</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aperture size</td>
<td>mm</td>
<td>Øe</td>
<td>3.5</td>
<td>(1)</td>
</tr>
<tr>
<td>Low optical power</td>
<td>m⁻¹</td>
<td>P_L</td>
<td>-5</td>
<td></td>
</tr>
<tr>
<td>Voltage for PL</td>
<td>V</td>
<td>V_L</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>High optical power</td>
<td>m⁻¹</td>
<td>P_H</td>
<td>+15</td>
<td></td>
</tr>
<tr>
<td>Voltage for PH</td>
<td>V</td>
<td>V_H</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Optical power @ 0V</td>
<td>m⁻¹</td>
<td>P_0</td>
<td>-15</td>
<td></td>
</tr>
<tr>
<td>Wave Front Error, rms</td>
<td>nm</td>
<td>WFE_rms</td>
<td>50</td>
<td>(2) ; (5)</td>
</tr>
<tr>
<td>Voltage @ 0 diopter</td>
<td>V</td>
<td>V_0D</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>Hysteresis</td>
<td>m⁻¹</td>
<td>H</td>
<td>0.05</td>
<td>(3) ; (5)</td>
</tr>
<tr>
<td>Slope</td>
<td>(m.V)⁻¹</td>
<td>S</td>
<td>0.96</td>
<td>(4) ; (5)</td>
</tr>
<tr>
<td>Transmission @ 587 nm</td>
<td>%</td>
<td>T_587</td>
<td>97</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

(1) Pupil size on the bottom part of the lens. For more details, please refer to “Optical Design Information” and “Cosmetic Specification” sections.

(2) Measured on typical pupil size and on [P_L;P_H] – WFE is mainly astigmatism – Above P_H, spherical aberration becomes significant.

(3) Hysteresis in static mode, voltage increasing from 0 to V_max, and from V_max to 0. Hysteresis is the maximum difference between the rising curve and the falling curve on [P_L;P_H].

(4) Parameter is compiled on [P_L;P_H].

(5) Parameter measured with a 2 V sampling.
Electrical Specifications
It is recommended that the lens be used only with a qualified driver.

The following driver IC’s are qualified for use with Corning Varioptic A-39N lenses:
- Microchip HV892
- Maxim MAX 14574

Due to a lower voltage range, using the Microchip driver will deliver a reduced dynamic range of the lens.

When using Maxim driver, a 5 kΩ resistor should be added. Please refer to MAAN - Maxim integration tips for details.

Temperature Range

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating temperature range</td>
<td>°C</td>
<td>-20°C</td>
<td>25</td>
<td>+60°C</td>
<td></td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>°C</td>
<td>-40°C</td>
<td>25</td>
<td>+85°C</td>
<td></td>
</tr>
</tbody>
</table>

Remarks:
- Corning Varioptic Lenses are not designed to be soldered. For electrical connection, please refer to the application notes.
- Storage above maximum storage temperature will reduce lifetime of the lens. Temporary or permanent damage may occur if the maximum temperature is exceeded.

Transmission Performance

The two outer surfaces of the glass windows of the adjustable lenses have AR coatings. These AR coatings have been optimized for different wavelengths.

Transmission curves of the complete adjustable lens including AR coatings:
Mechanical Dimensions
A-39N

Top view of lens
Rear view of lens

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Symbol</th>
<th>Typ</th>
<th>Max</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>External diameter</td>
<td>mm</td>
<td>D1</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recess diameter</td>
<td>mm</td>
<td>D2</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal wave diameter</td>
<td>mm</td>
<td>D3</td>
<td>10.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recess depth</td>
<td>mm</td>
<td>T1</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thickness, front area</td>
<td>mm</td>
<td>T2</td>
<td>2.05</td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>Thickness, flat to bottom</td>
<td>mm</td>
<td>T3</td>
<td>2.2</td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>Thickness, flat to cap edge</td>
<td>mm</td>
<td>T4</td>
<td>1.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parallelism, rear window to A</td>
<td>mm</td>
<td>P1</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parallelism, front window to A</td>
<td>mm</td>
<td>P2</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concentricity, optical axis to B</td>
<td>mm</td>
<td>C1</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

(1) Temperature dependent. A 70 µm minimum free space in front of cap should be left available for thermal expansion \(\Delta_{T2-T3} (T) = 1 \mu m/\degree C \).
Electrical Contact for A-39NX - PXX

The following FPC connectors are compatible with the FPC tip:

- SFW4S-2STE9LF from Amphenol FCI
- 04FMN-BTK-A (LF)(SN) from JST

Mechanical Dimensions A-39NX-PW-65 or PW-XX
Integration
Integration of A-39N

Electrical connection is done like a coin battery on the top and bottom parts of the lens. Locations of electrical contact are shown in the drawing below:

A 5 Ω max contact resistance is recommended to allow appropriate electrical connection.

For more details about electrical connection, please check Corning Varioptic Lenses application notes.

The upper part of the lens acts as a membrane to compensate temperature variations.

The central area of the lens inside a ØD4= 9 mm diameter disc / 0.07 mm thickness disc should be left free for any mechanical parts. The area outside this disc can be used to maintain the lens with a maximum force of 40 N uniformly distributed.
Integration of A-39NX-PXX

All surfaces A, B and C can be used as a mechanical reference (see the drawing below).

Corning reserves the right to change its product specifications at any time without notice. Please ensure you have the latest applicable specification before purchasing a Corning product. It is customer responsibility to determine the suitability of Corning’s product to its own application. Corning does not provide any warranty of merchantability or fitness for a particular purpose. Product specifications are available upon request at varioptic@corning.com.